Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1282868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099297

RESUMO

Patients with digenic S100A3 and S100A13 mutations exhibited an atypical and progressive interstitial pulmonary fibrosis, with impaired intracellular calcium homeostasis and mitochondrial dysfunction. Here we provide direct evidence of a causative effect of the mutation on receptor mediated calcium signaling and calcium store responses in control cells transfected with mutant S100A3 and mutant S100A13. We demonstrate that the mutations lead to increased mitochondrial mass and hyperpolarization, both of which were reversed by transfecting patient-derived cells with the wild type S100A3 and S100A13, or extracellular treatment with the recombinant proteins. In addition, we demonstrate increased secretion of inflammatory mediators in patient-derived cells and in control cells transfected with the mutant-encoding constructs. These findings indicate that treatment of patients' cells with recombinant S100A3 and S100A13 proteins is sufficient to normalize most of cellular responses, and may therefore suggest the use of these recombinant proteins in the treatment of this devastating disease.

2.
Front Med (Lausanne) ; 10: 1213320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663654

RESUMO

Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.

3.
J Clin Med ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37240504

RESUMO

After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.

4.
Biomolecules ; 12(5)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625658

RESUMO

Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model. Fifteen sheep (Ovis aries) underwent supracoronary aortic banding using an inflatable cuff. Controlled and progressive induction of pressure overload in the LV was monitored by echocardiography. Endomyocardial biopsies were collected throughout the development of LV failure (LVF) and during the stage of recovery. RNA-seq data were analysed using the PANTHER database, Metascape, and DisGeNET to annotate the gene expression for functional ontologies. Echocardiography revealed distinct clinical differences between the progressive stages of hypertrophy, dilatation, and failure. A unique set of transcript expressions in each stage was identified, despite an overlap of gene expression. The removal of pressure overload allowed the LV to recover functionally. Compared to the control stage, there were a total of 256 genes significantly changed in their expression in failure, 210 genes in hypertrophy, and 73 genes in dilatation. Gene expression in the recovery stage was comparable with the control stage with a well-noted improvement in LV function. RNA-seq revealed the expression of genes in each stage that are not reported in cardiovascular pathology. We identified genes that may be potentially involved in the aetiology of progressive stages of HF, and that may provide future targets for its management.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Animais , Ecocardiografia , Coração , Insuficiência Cardíaca/diagnóstico , Hipertrofia , Ovinos
5.
Heliyon ; 6(5): e03864, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32420474

RESUMO

Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.

6.
Mediators Inflamm ; 2019: 3856360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780858

RESUMO

Mast cells play an important role in immunomodulation and in the maintenance of vascular integrity. Interleukin-6 (IL-6) is one of the key biomarkers and therapeutic target in systemic vasculitis. The objective of the current study is to describe the role of mast cells in arterial IL-6 homeostasis. Eight- to ten-week-old male C57BL/6 (wild-type) mice were injected with either (a) saline, (b) compound 48/80 (a systemic mast cell degranulating agent), (c) lipopolysaccharide (LPS), or (d) a combination of C48/80 and LPS. Twenty-four hours after the injections, mice were sacrificed and serum samples and aortic tissues were analyzed for determining inflammatory response and cytokine expression profile. The results revealed that induction of mast cell degranulation significantly lowers serum IL-6 levels and aortic expression of IL-6 in LPS-treated mice. Significantly higher aortic expression of toll-like receptor-2 (TLR-2) and TNF-α was seen in the LPS and LPS+C48/80 groups of mice compared to controls. Aortic expression of TLR-4 was significantly decreased in LPS+C48/80 compared to C48/80 alone. LPS+C48/80-treated mice presented with a 3-fold higher aortic expression of suppressor of cytokine signaling (SOCS-1) compared to saline-injected groups. The inhibition of LPS-induced increase in serum IL-6 levels by mast cell degranulation was not seen in H1R knockout mice which suggests that mast cell-derived histamine acting through H1R may participate in the regulatory process. To examine whether the mast cell-mediated downregulation of LPS-induced IL-6 production is transient or cumulative in nature, wild-type mice were injected serially over a period of 10 days (5 injections) and serum cytokine levels were quantified. We found no significant differences in serum IL-6 levels between any of the groups. While mice injected with C48/80 or LPS had higher IL-10 compared to vehicle-injected mice, there was no difference between C48/80- and LPS+C48/80-injected mice. In conclusion, in an in vivo setting, mast cells appear to partially and transiently regulate systemic IL-6 homeostasis. This effect may be regulated through increased systemic IL-10 and/or aortic overexpression of SOCS-1.


Assuntos
Interleucina-10/sangue , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Immunol ; 8: 990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878769

RESUMO

Mast cells are important cells of the immune system. Although traditionally considered as key players in allergic and hypersensitivity reactions, emerging evidence suggests that mast cells have many complex roles in vascular disease. These include regulation of vasodilation, angiogenesis, activation of matrix metalloproteinases, apoptosis of smooth muscle cells, and activation of the renin angiotensin system. Mast cells are also known to play an immunomodulatory role via modulation of regulatory T-cell (Treg), macrophage and endothelial cell functions. This dual role of the mast cells is evident in myeloperoxidase anti-neutrophil cytoplasmic antibodies-mouse model of glomerulonephritis in which mast cell deficiency worsens glomerulonephritis, whereas inhibition of mast cell degranulation is effective in abrogating the development of glomerulonephritis. Our previous work demonstrated that mast cell degranulation inhibits lipopolysaccharide-induced interleukin 6 (IL-6) production in mice. This effect was not seen in histamine-1-receptor knockout (H1R-/-) mice suggesting a role for histamine in IL-6 homeostasis. In addition, mast cell degranulation-mediated decrease in IL-6 production was associated with an upregulation of suppressor of cytokine signaling-1 protein in the aorta. We propose that mast cells regulate large artery inflammation through T-cells, shifting a primarily Th1 and Th17 toward a Th2 response and leading to enhanced IL-10 production, activation Treg cells, and the inhibition of macrophage functions.

8.
PLoS One ; 9(7): e102165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25020133

RESUMO

Although increased serum histamine levels and H1R expression in the plaque are seen in atherosclerosis, it is not known whether H1R activation is a causative factor in the development of the disease, or is a host defense response to atherogenic signals. In order to elucidate how pharmacological inhibition of histamine receptor 1 (H1R) signaling affects atherogenesis, we administered either cetirizine (1 and 4 mg/kg. b.w) or fexofenadine (10 and 40 mg/kg. b.w) to ApoE-/- mice maintained on a high fat diet for three months. Mice ingesting a low dose of cetirizine or fexofenadine had significantly higher plaque coverage in the aorta and cross-sectional lesion area at the aortic root. Surprisingly, the higher doses of cetirizine or fexofenadine did not enhance atherosclerotic lesion coverage over the controls. The low dose of fexofenadine, but not cetirizine, increased serum LDL cholesterol. Interestingly, the expression of iNOS and eNOS mRNA was increased in aortas of mice on high doses of cetirizine or fexofenadine. This may be a compensatory nitric oxide (NO)-mediated vasodilatory mechanism that accounts for the lack of increase in the progression of atherosclerosis. Although the administration of cetirizine did not alter blood pressure between the groups, there was a positive correlation between blood pressure and lesion/media ratio at the aortic root in mice receiving the low dose of cetirizine. However, this association was not observed in mice treated with the high dose of cetirizine or either doses of fexofenadine. The macrophages or T lymphocytes densities were not altered by low doses of H1-antihistamines, whereas, high doses decreased the number of macrophages but not T lymphocytes. The number of mast cells was decreased only in mice treated with low dose of fexofenadine. These results demonstrate that chronic ingestion of low therapeutic doses of cetirizine or fexofenadine enhance progression of atherosclerosis.


Assuntos
Aterosclerose/induzido quimicamente , Aterosclerose/patologia , Cetirizina/efeitos adversos , Antagonistas dos Receptores Histamínicos H1/efeitos adversos , Terfenadina/análogos & derivados , Análise de Variância , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Análise Química do Sangue , Antígenos CD36/metabolismo , Cetirizina/sangue , Cetirizina/farmacologia , LDL-Colesterol/sangue , Dieta Hiperlipídica , Progressão da Doença , Imunofluorescência , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terfenadina/efeitos adversos , Terfenadina/sangue , Terfenadina/farmacologia
9.
Am J Physiol Gastrointest Liver Physiol ; 307(2): G219-28, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24852568

RESUMO

We examined the effects of two over-the-counter H1-antihistamines on the progression of fatty liver disease in male C57Bl/6 wild-type and apolipoprotein E (ApoE)-/- mice. Mice were fed a high-fat diet (HFD) for 3 mo, together with administration of either cetirizine (4 mg/kg body wt) or fexofenadine (40 mg/kg body wt) in drinking water. Antihistamine treatments increased body weight gain, gonadal fat deposition, liver weight, and hepatic steatosis in wild-type mice but not in ApoE-/- mice. Lobular inflammation, acute inflammation, and necrosis were not affected by H1-antihistamines in either genotype. Serum biomarkers of liver injury tended to increase in antihistamine-treated wild-type mice. Serum level of glucose was increased by fexofenadine, whereas lipase was increased by cetirizine. H1-antihistamines reduced the mRNA expression of ApoE and carbohydrate response element-binding protein in wild-type mice, without altering the mRNA expression of sterol regulatory element-binding protein 1c, fatty acid synthase, or ApoB100, in either genotype. Fexofenadine increased both triglycerides and cholesterol ester, whereas cetirizine increased only cholesterol ester in liver, with a concomitant decrease in serum triglycerides by both antihistamines in wild-type mice. Antihistamines increased hepatic levels of conjugated bile acids in wild-type mice, with the effect being significant in fexofenadine-treated animals. The increase was associated with changes in the expression of organic anion transport polypeptide 1b2 and bile salt export pump. These results suggest that H1-antihistamines increase the progression of fatty liver disease in wild-type mice, and there seems to be an association between the severity of disease, presence of ApoE, and increase in hepatic bile acid levels.


Assuntos
Apolipoproteínas E/deficiência , Cetirizina/toxicidade , Dieta Hiperlipídica , Fígado Gorduroso/induzido quimicamente , Antagonistas dos Receptores Histamínicos H1/toxicidade , Fígado/efeitos dos fármacos , Terfenadina/análogos & derivados , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/genética , Ácidos e Sais Biliares/metabolismo , Biomarcadores/sangue , Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Fígado/patologia , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Índice de Gravidade de Doença , Terfenadina/toxicidade , Triglicerídeos/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 302(12): H2612-21, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505639

RESUMO

Mast cells are important cells of the immune system and are recognized as participants in the pathogenesis of atherosclerosis. In this study, we evaluated the role of mast cells on the progression of atherosclerosis and hepatic steatosis using the apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)/mast cell-deficient (Kit(W-sh/W-sh)) mouse models maintained on a high-fat diet. The en face analyses of aortas showed a marked reduction in plaque coverage in ApoE(-/-)/Kit(W-sh/W-sh) compared with ApoE(-/-) after a 6-mo regimen with no significant change noted after 3 mo. Quantification of intima/media thickness on hematoxylin and eosin-stained histological cross sections of the aortic arch revealed no significant difference between ApoE(-/-) and ApoE(-/-)/Kit(W-sh/W-sh) mice. The high-fat regimen did not induce atherosclerosis in either Kit(W-sh/W-sh) or wild-type mice. Mast cells with indications of degranulation were seen only in the aortic walls and heart of ApoE(-/-) mice. Compared with ApoE(-/-) mice, the serum levels of total cholesterol, low-density lipoprotein and high-density lipoprotein were decreased by 50% in ApoE(-/-)/Kit(W-sh/W-sh) mice, whereas no appreciable differences were noted in serum levels of triglycerides or very low density lipoprotein. ApoE(-/-)/Kit(W-sh/W-sh) mice developed significantly less hepatic steatosis than ApoE(-/-) mice after the 3-mo regimen. The analysis of Th1/Th2/Th17 cytokine profile in the sera revealed significant reduction of interleukin (IL)-6 and IL-10 in ApoE(-/-)/Kit(W-sh/W-sh) mice compared with ApoE(-/-) mice. The assessment of systemic generation of thromboxane A(2) (TXA(2)) and prostaglandin I(2) (PGI(2)) revealed significant decrease in the production of PGI(2) in ApoE(-/-)/Kit(W-sh/W-sh) mice with no change in TXA(2). The decrease in PGI(2) production was found to be associated with reduced levels of cyclooxygenase-2 mRNA in the aortic tissues. A significant reduction in T-lymphocytes and macrophages was noted in the atheromas of the ApoE(-/-)/Kit(W-sh/W-sh) mice. These results demonstrate the direct involvement of mast cells in the progression of atherosclerosis and hepatic steatosis.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/imunologia , Progressão da Doença , Fígado Gorduroso/imunologia , Mastócitos/imunologia , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Espessura Intima-Media Carotídea , Citocinas/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Epoprostenol/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Mastócitos/patologia , Camundongos , Camundongos Knockout , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Tromboxano A2/metabolismo
12.
Mediators Inflamm ; 2012: 274347, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363102

RESUMO

We examined the effect of intact human mast cells (HMC-1 5C6) and their selected mediators on interleukin-6 (IL-6) production and bone morphogenetic protein-2 (BMP-2) expression in human coronary artery endothelial cells (HCAEC) in the presence and absence of lipopolysaccharide (LPS). Scanning electron microscopy showed that HMC-1 5C6 cells adhere to HCAEC in cocultures. Addition of HMC-1 5C6 cells markedly enhanced the IL-6 production by quiescent and LPS-activated HCAEC even at the maximal concentration of LPS. Furthermore, mast cell-derived histamine and proteases accounted for the direct and synergistic effect of mast cells on IL-6 production that was completely blocked by the combination of histamine receptor-1 antagonist and protease inhibitors. Another novel finding is that histamine was able to induce BMP-2 expression in HCAEC. Collectively, our results suggest that endotoxin and mast cell products synergistically amplify vascular inflammation and that histamine participates in the early events of vascular calcification.


Assuntos
Vasos Coronários/citologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Mastócitos/citologia , Mastócitos/metabolismo , Western Blotting , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Comunicação Celular/genética , Comunicação Celular/fisiologia , Células Cultivadas , Humanos , Interleucina-6 , Reação em Cadeia da Polimerase em Tempo Real
13.
Integr Cancer Ther ; 11(2): 120-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498471

RESUMO

The biological effects of the anthraquinone fraction (AQf) isolated from in vitro cultures of Ophiorrhiza rugosa Wall. var decumbens (Rubiaceae) were evaluated. AQf showed differential activity on reactive oxygen species; it mediated the generation of superoxide radical and inhibited hydroxyl radical and lipid peroxidation. No considerable nitric oxide scavenging activity was observed for AQf. The AQf induced 50% cytotoxicity in Ehrlich ascites carcinoma and Dalton's lymphoma ascites at concentrations of 130 and 60 µg/mL, respectively. It effectively reduced the inflammation induced by carrageenan in mice. An AQf concentration of 200 mg/kg body weight reduced solid tumor progression in mice. It also prolonged the life span of ascites tumor-bearing mice compared with control mice.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Linfoma/tratamento farmacológico , Rubiaceae/química , Animais , Carcinoma de Ehrlich/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Radical Hidroxila/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Linfoma/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
14.
Immunology ; 132(4): 578-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21255012

RESUMO

Summary Histamine is a well-recognized modulator of vascular inflammation. We have shown that histamine, acting via H1 receptors (H1R), synergizes lipopolysaccharide (LPS)-induced production of prostaglandin I(2) (PGI(2)), PGE(2) and interleukin-6 (IL-6) by endothelial cells. The synergy between histamine and LPS was partly attributed to histamine -induced expression of Toll-like receptor 4 (TLR4). In this study, we examined whether LPS stimulates the H1R expression in human coronary artery endothelial cells (HCAEC) with resultant enhancement of histamine responsiveness. Incubation of HCAEC with LPS (10-1000 ng/ml) resulted in two-fold to fourfold increases in H1R mRNA expression in a time-dependent and concentration-dependent fashion. In contrast, LPS treatment did not affect H2R mRNA expression. The LPS-induced H1R mRNA expression peaked by 4 hr after LPS treatment and remained elevated above the basal level for 20-24 hr. Flow cytometric and Western blot analyses revealed increased expression of H1R protein in LPS-treated cells. The specific binding of [(3)H]pyrilamine to H1R in membrane proteins from LPS-treated HCAEC was threefold higher than the untreated cells. The LPS-induced H1R expression was mediated through TLR4 as gene silencing by TLR4-siRNA and treatment with a TLR4 antagonist inhibited the LPS effect. When HCAEC were pre-treated with LPS for 24 hr, washed and challenged with histamine, 17-, 10- and 15-fold increases in PGI(2), PGE(2) and IL-6 production, respectively, were noted. Histamine-induced enhancement of the synthesis of PGI(2), PGE(2) and IL-6 by LPS-primed HCAEC was completely blocked by an H1R antagonist. The results demonstrate that LPS, through TLR4 activation, up-regulates the expression and function of H1R and amplifies histamine-induced inflammatory responses in HCAEC.


Assuntos
Células Endoteliais/efeitos dos fármacos , Histamina/farmacologia , Lipopolissacarídeos/farmacologia , Receptores Histamínicos H1/metabolismo , Western Blotting , Células Cultivadas , Vasos Coronários/citologia , Dinoprostona/metabolismo , Sinergismo Farmacológico , Células Endoteliais/metabolismo , Epoprostenol/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Pirilamina/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaio Radioligante , Receptores Histamínicos H1/genética , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...